9 research outputs found

    Analysis of the Efficacy of Real-Time Hand Gesture Detection with Hog and Haar-Like Features Using SVM Classification

    Get PDF
    The field of hand gesture recognition has recently reached new heights thanks to its widespread use in domains like remote sensing, robotic control, and smart home appliances, among others. Despite this, identifying gestures is difficult because of the intransigent features of the human hand, which make the codes used to decode them illegible and impossible to compare. Differentiating regional patterns is the job of pattern recognition. Pattern recognition is at the heart of sign language. People who are deaf or mute may understand the spoken language of the rest of the world by learning sign language. Any part of the body may be used to create signs in sign language. The suggested system employs a gesture recognition system trained on Indian sign language. The methods of preprocessing, hand segmentation, feature extraction, gesture identification, and classification of hand gestures are discussed in this work as they pertain to hand gesture sign language. A hybrid approach is used to extract the features, which combines the usage of Haar-like features with the application of Histogram of Oriented Gradients (HOG).The SVM classifier is then fed the characteristics it has extracted from the pictures in order to make an accurate classification. A false rejection error rate of 8% is achieved while the accuracy of hand gesture detection is improved by 93.5%

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    PORTUGALIAE ELECTROCHIMICA ACTA Green Electrochemistry -A Versatile Tool in Green Synthesis: an Overview

    No full text
    Abstract Green is attractive and beautiful. Green chemistry has attracted scientists and researchers from various fields. Electrolysis is considered as green electrochemistry, because electrochemical process can be stopped and controlled at any time and at any stage of the reaction. Usually water is used as the solvent. Corrosive acids are not used. Toxic chemicals are not involved. The main components of an electrolysis process are anode, cathode and electrolyte. By using suitable anodes, cathodes and medium, electrolysis has been applied in various fields. Electrolysis has been used to decolourise dyes from effluents of textile industries. The decolourisation efficiencies of various anodes, such as platinised-titanium, mild steel and aluminium in various electrolytic media, such as well water and sea water, have been evaluated and compared. The role of positive chlorine in the decolourisation process has been established. Electrolysis, in presence of a suitable reducing agent, has also been used to synthesize nanoparticles. Copper nanoparticles and silver nanoparticles have been produced by making use of reducing agents, such as sodium potassium tartrate and trisodium citrate. Various plants extracts have also been used as reducing agents. The nanoparticles synthesized by green methods have been characterized by UV-Visible absorption spectroscopy and fluorescence spectroscopy. The surface morphology of these nanoparticles has been characterized by SEM and EDS. Blue pigment that can be used in paint industry has been synthesized by green electrolysis. For this purpose, waste mild steel rod has been used, and graphite has been used as anode. The blue pigment prepared has been characterized by UV-Visible absorption spectroscopy and fluorescence spectroscopy. The surface morphology of these nanoparticles has been characterized by SEM and EDS. The blue pigment prepared is found to be in the nano range. This can be used in paint industry and also in the field of nano biosensors. By green electrolysis method, Hofmann rearrangement has been successfully effected, benzamide being the starting material. The product obtained has been diazotised and coupled with α-napthol and β-napthol to give dyes. The dyes have been characterized by UV-Visible absorption spectroscopy and fluorescence spectroscopy. Polyaniline has also been synthesized by green electrolysis process, without using expensive oxidizing agents, but using positive chloride ions generated in-situ during electrolysis, in the presence of sodium chloride solution as electrolyte. The polyaniline produced has been characterized by UV-Visible absorption spectroscopy, fluorescence spectroscopy and FTIR spectra

    Correction to: Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study (Intensive Care Medicine, (2021), 47, 2, (160-169), 10.1007/s00134-020-06234-9)

    No full text
    The original version of this article unfortunately contained a mistake. The members of the ESICM Trials Group Collaborators were not shown in the article but only in the ESM. The full list of collaborators is shown below. The original article has been corrected
    corecore